Abstract

Copper is an essential element to play significant roles in human health associated to the strong redox properties of Cu(I) and Cu(II). The concurrent monitoring of copper species in biological matrixes is highly desired. Herein, a dual-channel fluorescence nanoprobe was designed for the speciation of mono- and divalent copper by conjugating carbon dots (CDs) with Eu-based metal-organic frameworks (Eu-MOFs). The obtained Eu-MOFs@CD nanoprobe exhibits fluorescence at λex/λem = 380/454 nm from CDs and λex/λem = 275/615 nm from Eu-MOFs. Bathocuproine disulfonate (BCS) specifically chelates Cu+ to produce a BCS-Cu+ adduct with absorption at 480 nm, which quenches the fluorescence of CDs at 454 nm due to the inner filter effect. On the other hand, Cu2+ quenches the fluorescence of Eu-MOFs due to the replacement of Eu3+ by Cu2+. Thus, Eu-MOFs@CDs enable extremely fast detection of Cu+ and Cu2+ within 1 min. Furthermore, the nanoprobe is demonstrated by monitoring the variation of Cu+ and Cu2+ in the degradation process of copper nanoparticles and Cu-based MOFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.