Abstract

Metal-organic frameworks (MOFs) have been studied extensively in the hydrogen evolution reaction (HER) and the water oxidation reaction (WOR) with sacrificial reagents, but overall photocatalytic water splitting using MOFs has remained challenging, principally because of the fast recombination of photo-generated electrons and holes. Here we have integrated HER- and WOR-MOF nanosheets into liposomal structures for separation of the generated charges. The HER-MOF nanosheets comprise light-harvesting Zn-porphyrin and catalytic Pt-porphyrin moieties, and are functionalized with hydrophobic groups to facilitate their incorporation into the hydrophobic lipid bilayer of the liposome. The WOR-MOF flakes consist of [Ru(2,2'-bipyridine)3]2+-based photosensitizers and Ir-bipyridine catalytic centres, and are localized in the hydrophilic interior of the liposome. This liposome-MOF assembly achieves overall photocatalytic water splitting with an apparent quantum yield of (1.5 ± 1)% as a result of ultrafast electron transport from the antennae (Zn-porphyrin and [Ru(2,2'-bipyridine)3]2+) to the reaction centres (Pt-porphyrin and Ir-bipyridine) in the MOFs and efficient charge separation in the lipid bilayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.