Abstract

Metal-organic frameworks (MOFs), a new class of emerging materials with porosity, crystalline, high interior surface area, controllable structures, high thermal stability, and high yield with low cost, are showing the potential applications for hydrogen storage/release. With respect to physical hydrogen storage (compression, liquefaction, and physisorption), the chemical hydrogen storage is free from extreme processing conditions and safety risk. In this chapter, we select recent and significant advances in the development of MOFs as platforms for hydrogen generation from chemical hydrides and highlight special emphasis on enhanced kinetics and thermodynamics for (1) hydrogen generation from chemical hydrides confined in MOFs, (2) MOF-supported metal nanoparticle-catalyzed hydrogen generation from chemical hydrides, and (3) hydrogen generation from chemical hydrides catalyzed by catalysts formed using MOFs as precursors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.