Abstract
In this study, a new metal-organic framework-monolith composite for in-tube solid phase microextraction phase (IT-SPME) of fluoroquinolones (FQs) was prepared. 4-Vinylbenzoic acid was copolymerized with ethylenedimethacrylate in a fused silica capillary to form porous monolith. After that, zeolitic imidazolate frameworks (ZIF-8) were synthesized in situ within the pores and the surface of the monolith by controlled layer-by-layer self-assembly of Zn2+ and imidazole. The introduction of ZIF-8 enhanced the surface area of monolith composite, and thus, improving the extraction performance of IT-SPME for FQs obviously. Under the optimized conditions, a highly sensitive method for the monitoring of FQs residue in water and honey samples was developed by the on-line combination of IT-SPME with high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The limits of detection (S/N = 3) for the targeted FQs in water and honey samples were as low as 0.14–0.61 ng/L and 0.39–1.1 ng/L, respectively. The relative standard deviations (RSDs) for intra-day and inter-day assay variability were less than 10% in all samples. The established on-line IT-SPME-HPLC-FLD was successfully used to detect ultra-trace FQs in environmental water and honey samples. Recoveries at different spiked concentrations ranged from 80.1% to 119% and 80.2–117% for water and honey samples, respectively, with satisfactory reproducibility. Compared to up-to-date reported methods, the proposed approach exhibits some features such as high sensitivity, convenience, partial automation, low consumptions of sample and solvent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.