Abstract

Metal-organic framework (MOF)-derived synergistic catalysts were easily functionalized on hollow SnO2 nanotubes (NTs) via electrospinning and subsequent calcination. Nanoscale Pd NPs (∼2 nm) loaded Zn-based zeolite imidazole framework (Pd@ZIF-8, ∼80 nm) was used as a new catalyst-loading platform for the effective functionalization of a PdO@ZnO complex catalyst onto the thin wall of one-dimensional metal oxide NTs. The well-dispersed nanoscale PdO catalysts (3-4 nm) and multiheterojunctions (PdO/ZnO and ZnO/SnO2) on hollow structures are essential for the development of high-performance gas sensors. As a result, the PdO@ZnO dual catalysts-loaded hollow SnO2 NTs (PdO@ZnO-SnO2 NTs) exhibited high acetone response (Rair/Rgas = 5.06 at 400 °C @ 1 ppm), superior acetone selectivity against other interfering gases, and fast response (20 s) and recovery (64 s) time under highly humid atmosphere (95% RH). In this work, the advantages of hollow SnO2 NT structures with high surface area and open porosity were clearly demonstrated by the comparison to SnO2 nanofibers (NFs). Moreover, the sensor arrays composed of SnO2 NFs, SnO2 NTs, PdO@ZnO-SnO2 NFs, and PdO@ZnO-SnO2 NTs successfully identified the patterns of the exhaled breath of normal people and simulated diabetics by using a principal component analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.