Abstract
Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and, more importantly, cause internal short circuit and lead to thermal runaway and fire. Therefore, sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries (SMBs). Herein, a design concept for the incorporation of metal–organic framework (MOF) in polymer matrix (polyvinylidene fluoride‐hexafluoropropylene) is practiced to prepare a novel gel polymer electrolyte (PH@MOF polymer‐based electrolyte [GPE]) and thus to achieve high‐performance SMBs. The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na+ but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction. A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm−2 with areal capacity of 5 mA h cm−2 is achieved by symmetric cells based on the resulted GPE while the Na3V2O2(PO4)2F@rGO (NVOPF)|PH@MOF|Na cell also displays impressive specific cycling capacity (113.3 mA h g−1 at 1 C) and rate capability with considerable capacity retention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.