Abstract

AbstractThe complex tumor microenvironment (TME) and nonspecific drug targeting limit the clinical efficacy of photodynamic therapy in combination with chemotherapy. Herein, a metal–organic framework (MOF) assisted strategy is reported that modulates TME by reducing tumor hypoxia and intracellular glutathione (GSH) and offers targeted delivery and controlled release of the trapped chemodrug. Platinum(IV)‐diazido complex (Pt(IV)) is loaded inside a Cu(II) carboxylate‐based MOF, MOF‐199, and an aggregation‐induced‐emission photosensitizer, TBD, is conjugated to polyethylene glycol for encapsulating Pt(IV)‐loaded MOF‐199. Once the fabricated TBD‐Pt(IV)@MOF‐199 nanoparticles are internalized by cancer cells, MOF‐199 consumes intracellular GSH and decomposes to fragments to release Pt(IV). Upon light irradiation, the released Pt(IV) generates O2 that relieves hypoxia and produces Pt(II)‐based chemodrug inside cancer cells. Concomitantly, efficient reactive oxygen species generation and bright emission are afforded by TBD, resulting in synergistic image‐guided photo‐chemo therapy with enhanced efficacies and mitigated side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.