Abstract
ABSTRACT We synthesized high-heat-resistant adhesives based on metal – organic frameworks owing to their high decomposition temperature and the absence of a glass transition. Heat-resistance tests were performed on adhesive joints consisting of zeolitic imidazolate framework (ZIF)-67-based adhesives and a copper substrate. The as-synthesized ZIF-67-based adhesive exhibited heat resistances at 600 and 700°C in air and nitrogen atmospheres, respectively, comparable to those of conventional high-heat-resistant polymer-based adhesives. The degradation mechanism of the ZIF-67 adhesives was investigated, and their high heat resistance was attributed to the stable existence of the ZIF-67 qtz phase in the adhesive layer at high temperatures without the formation of voids. Thus, adhesives based on ZIF-67 and other metal – organic frameworks can be applied in high-temperature industrial systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.