Abstract

A chemical vapor deposition process has been developed for titanium dioxide (TiOx) for applications as capacitor dielectric in sub-quarter-micron dynamic random-access memory devices, and as gate insulators in emerging generations of etal-oxide-semiconductor transistors. Studies using the β-diketonate source precursor (2,2,6,6-tetramethyl-3,5-heptanedionato) titanium were carried out to examine the underlying mechanisms that control film nucleation and growth kinetics and to establish the effects of key process parameters on film purity, composition, texture, morphology, and electrical properties. Resulting film properties were thoroughly analyzed by x-ray diffraction, x-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, scanning electron microscopy (SEM), focused-ion-beam SEM, and capacitance–voltage (C–V) measurements. The study resulted in the identification of an optimized process for the deposition of an anatase–rutile TiOx film with a dielectric constant approximately 85 at 1 MHz for a 330-nm thickness, and a leakage current below 2 × 10−8 A/cm2 for bias voltage values up to 3.5 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.