Abstract

Metalorganic chemical vapor depositon (MOCVD) in situ growth of p-on-n junctions for long wavelength infrared (LWIR) and medium wavelength infrared (MWIR) photodiodes is reported. The interdiffused multilayer process was used for the growth of the HgCdTe junctions on CdTe and CdZnTe substrates. The n-type region was grown undoped while the p-type layer was arsenic doped using tertiarybutylarsine. Following a low temperature anneal in Hg vapor, carrier densities of (0.2-2) x 1015 cm3 and mobilities of (0.7-1.2) x 105 cm2/V-s were obtained for n-type LWIR (x ~ 0.22) layers at 80K. Carrier lifetimes of these layers at 80 K are ~l-2 μs. For the p-type region arsenic doping was controlled in the range of (1-20) x 1016 cm-3. Arsenic doping levels in the junctions were determined by calibrated secondary ion mass spectroscopy depth profile measurements. Composition and doping of the p-on-n heterojunctions could be independently controlled so that the electrical junction could be located deeper than the change in the composition. The graded composition region between the narrow and wide (x = 0.28-0.30) bandgap regions are 1–2 μm depending on the growth temperature. Backside-illuminated variable-area circular mesa photodiode arrays were fabricated on the grown junctions as well as on ion implanted n-on-p MWIR junctions. The spectral responses are classical in shape. Quantum efficiencies at 80K are 42–77% for devices without anti-reflection coating and with cutoff wavelengths of 4.8–11.0 μm. Quantum efficiencies are independent of reverse bias voltage and do not decrease strongly at lower temperatures indicating that valence band barrier effects are not present. 80K RoA of 15.9 Ω-cm2 was obtained for an array with 11.0 μm cutoff. Detailed measurements of the characteristics of the MOCVD in situ grown and implanted photodiodes are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call