Abstract

This chapter is devoted to the growth of Ga2O3 and its alloys by metalorganic chemical vapor deposition (MOCVD) or, equivalently, metalorganic vapor phase epitaxy (MOVPE). MOCVD is a standard epitaxial growth technique used for nitride, III–V, and oxide-based power devices as well as LEDs and laser diodes. It would, therefore, seem that MOCVD would be the most appropriate growth method to accelerate the development and commercialization of Ga2O3. However, molecular beam epitaxy (MBE) and halide vapor phase epitaxy (HVPE) were commonly used in the earlier growth studies of Ga2O3 epitaxial films. Fortunately, the broad range of knowledge available on the hardware and control systems of the MOCVD tool for the growth of device quality epitaxial films makes it easily adaptable to the growth of epitaxial Ga2O3. Device quality films grown at ~10 µm/h were demonstrated [1, 2], evidencing the ability of MOCVD to achieve the high throughput Ga2O3 epitaxial layer growth needed for high voltage power device and deep ultraviolet solar-blind photodetector commercial applications. This chapter discusses the following topics: the selection of suitable metalorganic precursors and oxygen sources used for the growth of Ga2O3 and (Al, Ga)2O3 alloys; the need for the careful design of the MOCVD reactors, homoepitaxial and heteroepitaxial growth on c-plane sapphire and native Ga2O3 substrates, donor and acceptor doping; and the origin and methods for mitigating or reducing unintentional impurities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call