Abstract

A novel strategy has been developed to spontaneously form ligand-free Pd(0) nanoparticles (NPs) from water- and air-sensitive Pd2dba3 in water. These NPs are thoroughly characterized by IR, NMR, and mass spectrometry, revealing that the metal-micelle binding plays a critical role in their stability and activity. High-resolution transmission electron microscopy supported the ultrasmall nature of NPs, whereas X-ray photoelectron spectroscopy analysis confirmed the zero-oxidation state of Pd. The shielding effect of micelles and enhanced stability of NPs enabled fast cross-couplings of water-sensitive triazine adducts of carboxylic acid to form nonsymmetrical biaryl ketones. These naturally formed NPs are more efficient than new synthetic NPs formed under a hydrogen atmosphere and traditional NPs formed using the air-sensitive Grignard reagent as a reductant. The activity of naturally formed NPs is compared with that of synthetic NPs over 34 substrates, revealing that naturally formed NPs are much more efficient than synthetic NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call