Abstract

A metallurgical investigation of failed samples of hot-strip mill work-rolls used in an integrated steel plant was made to determine the influence of microstructural characteristics on failure susceptibility and roll life. The samples investigated pertained to prematurely failed indefinite chill double-poured (ICDP) iron work-rolls, which exhibited varying roll lives under similar mill operating environments. Although microstructures of all the investigated rolls showed similar graphite morphologies irrespective of their mill performance, discernible differences in carbide characteristics could be observed between high and low life rolls. Microstructural observation of nital-etched roll specimens revealed that lower life rolls were characterized by carbide microcracking. The propensity for cracking was particularly high in carbides exhibiting microhardness greater than 1020 VPN. Electron-probe microanalysis (EPMA) indicated that carbides in the spalled rolls were mostly of M3C type, where M was Fe and Cr. Quantitative image analysis of phases in the investigated rolls revealed that while graphite volume fraction in the range of 4.0 to 6.4% did not significantly affect roll life, carbide content higher than 28.5 vol% was found detrimental. In fact, a carbide content in the range of 24.0 to 28.50 vol% was found to be desirable for higher roll life. The study thus revealed that although carbides are indispensable for high hardness, resistance to wear, and thermal cracking, an excessive volume fraction (>30 vol%) of high hardness (microhardness > 1020 VPN) carbides accentuated microcracking, which ultimately induced premature spalling of hot-strip mill work-rolls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.