Abstract
Electric arc beads commonly cause large fire and explosion accidents, especially during the powder process industries. During such fires, the original equipment is often severely burned, rendering electrical fire investigation impossible. Therefore, identifying the beads caused by electrical faults through metallurgical investigation is crucial. This study focused on the ‘cause’ of arc beads and determined their pattern characteristics through metallurgical analysis of copper wires with short-circuit currents of 100, 160, 200, and 240 A. According to microstructure characteristics and metallographic knowledge, bead pattern characteristics were divided into six types: hypereutectic (A), dendritic eutectic (B), chilled layer (C), cellular crystal (D), dendritic (E), and coarse columnar crystal (F). Oxide levels of each category were A (4.5%–7.6%) > C (2.0%–3.8%) > B (1.1%–2.4%) > D (1.0%–2.1%) > E (0.6%–1.9%) > F (0.1%–0.7%). When the short-circuit currents were the same, there were a greater number of small particle beads than large ones. As the current increased, the number of distributed beads with a particle size d < 1 mm decreased, with 1 mm ≤ d < 2 mm increased, and with d ≥ 2 mm were stable. Bead size and distribution had a negative linear correlation at 200 A. When the current increased, the proportion of beads with A and C structures gradually decreased, and those with D structures increased to more than 50%. Oxygen content and arc temperature determined the oxide form. These results are vital for electrical fire investigations and provide theoretical support for fire material evidence extraction and cause identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Loss Prevention in the Process Industries
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.