Abstract

Worm drives are commonly used where large reduction in speed and greater transfer of torque are required within a small space. Phosphor bronze is normally used material for this application owing to its lower coefficient of friction and good wear and fatigue properties. This work presents a failure analysis of a worm wheel. Analysis revealed that around 40% of the teeth of worm wheel were broken. Failure mode was identified to be intergranular brittle fracture using scanning electron microscopy. A number of casting voids could be observed. In addition, network of intermetallic phases were present along the grain boundaries. These phases were identified to be Cu3Sn and Ni3P using elemental mapping through wavelength dispersive spectroscopy technique. These phases were found to have significantly higher hardness compared to the matrix and their precipitation along grain boundaries made the alloy susceptible to intergranular fracture even under small increase in service stress than nominal level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.