Abstract

Metallothionein (MT) is a low-molecular-weight, cysteine-rich, metal-binding protein. Induction of MT has been proposed to be an important adaptive mechanism in decreasing Cd toxicity. MT has been shown to protect against CdCl2-induced lethality and hepatotoxicity; however, MT does not protect against acute CdMT-induced nephrotoxicity. This study was aimed at clarifying the role of metallothionein in chronic CdMT-induced renal injury. Wild type and MT-I/II knockout (MT-null) mice were therefore given sc injections of CdMT (25 and 100 microg Cd/kg) or saline daily, 6 times/week for 6 weeks, and renal injury was evaluated. Multiple injections of CdMT to wild-type mice resulted in renal Cd concentrations up to 120 microg/g kidney, along with a 100-fold increase in renal MT (450 microg/g kidney). In contrast, renal Cd concentration in MT-null mice administered multiple injections of CdMT reached a much lower level than in wild-type mice (<10 microg/g kidney). Although less Cd accumulated in their kidneys, MT-null mice were more susceptible than wild-type mice to CdMT-induced nephrotoxicity, as indicated by increased urinary excretion of protein and N-acetyl-beta-D-glucosaminidase, as well as by elevated blood urea nitrogen levels. At the higher daily dose of CdMT (100 microg Cd/kg), kidneys of MT-null mice were enlarged. Chronic CdMT administration eventually damaged the entire kidney, which included glomerular swelling, interstitial inflammation, edema, tubular cell degeneration, and atrophy. In contrast to a single injection of CdMT that produces proximal tubular necrosis, chronic injection of CdMT results in tubular cell apoptosis in both wild-type and MT-null mice. These data indicate that chronic CdMT administration produces similar renal injury to that observed after chronic CdCl2 administration, and that intracellular MT protects against nephrotoxicity produced by chronic CdMT administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.