Abstract
BackgroundMetallothionein (MT) is a cysteine-rich, metal-binding protein that can be induced by a variety of agents. Modulation of MT levels has also been shown to alter specific immune functions. We have noticed that the MT genes map close to the chemokines Ccl17 and Cx3cl1. Cysteine motifs that characterize these chemokines are also found in the MT sequence suggesting that MT might also act as a chemotactic factor.ResultsIn the experiments reported here, we show that immune cells migrate chemotactically in the presence of a gradient of MT. This response can be specifically blocked by two different monoclonal anti-MT antibodies. Exposure of cells to MT also leads to a rapid increase in F-actin content. Incubation of Jurkat T cells with cholera toxin or pertussis toxin completely abrogates the chemotactic response to MT. Thus MT may act via G-protein coupled receptors and through the cyclic AMP signaling pathway to initiate chemotaxis.ConclusionThese results suggest that, under inflammatory conditions, metallothionein in the extracellular environment may support the beneficial movement of leukocytes to the site of inflammation. MT may therefore represent a "danger signal"; modifying the character of the immune response when cells sense cellular stress. Elevated metallothionein produced in the context of exposure to environmental toxicants, or as a result of chronic inflammatory disease, may alter the normal chemotactic responses that regulate leukocyte trafficking. Thus, MT synthesis may represent an important factor in immunomodulation that is associated with autoimmune disease and toxicant exposure.
Highlights
Metallothionein (MT) is a cysteine-rich, metal-binding protein that can be induced by a variety of agents
Initiation of an immune response is accompanied by physiological changes that can produce a stressful environment for both the cells involved in the immune response, and for bystander cells that are part of adjacent but uninvolved tissues
In addition to having similar cysteine motifs, Ccl17 is located near the MT genes in both mice and humans (Figure 1B)
Summary
Metallothionein (MT) is a cysteine-rich, metal-binding protein that can be induced by a variety of agents. Initiation of an immune response is accompanied by physiological changes that can produce a stressful environment for both the cells involved in the immune response, and for bystander cells that are part of adjacent but uninvolved tissues. These stresses can be further increased by the presence of infectious microorganisms. Cells react to stressful environments with a broad range of different homeostatic responses. These responses can include the synthesis of a host of stress response proteins, including the heat shock proteins, acute phase cytokines, and metallothionein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.