Abstract
Strong mercury(II)-sulfur (Hg-SR) bonds in natural organic matter, which influence mercury bioavailability, are difficult to characterize. We report evidence for two new Hg-SR structures using X-ray absorption spectroscopy in peats from the Florida Everglades with added Hg. The first, observed at a mole ratio of organic reduced S to Hg (S(red)/Hg) between 220 and 1140, is a Hg(4)S(x) type of cluster with each Hg atom bonded to two S atoms at 2.34 Å and one S at 2.53 Å, and all Hg atoms 4.12 Å apart. This model structure matches those of metal-thiolate clusters in metallothioneins, but not those of HgS minerals. The second, with one S atom at 2.34 Å and about six C atoms at 2.97 to 3.28 Å, occurred at S(red)/Hg between 0.80 and 4.3 and suggests Hg binding to a thiolated aromatic unit. The multinuclear Hg cluster indicates a strong binding environment to cysteinyl sulfur that might impede methylation. Along with a linear Hg(SR)(2) unit with Hg-S bond lengths of 2.34 Å at S(red)/Hg of about 10 to 20, the new structures support a continuum in Hg-SR binding strength in natural organic matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.