Abstract

We have cloned two metal-regulated genes (mrgA and mrgC) from Bacillus subtilis by using transposon Tn917-lacZ. Both were isolated as iron-repressible gene fusions, but the metal specificity and sensitivity of gene repression are distinct. Transcription of mrgA-lacZ is induced at the end of logarithmic-phase growth in minimal medium, and this induction is prevented by excess manganese, iron, cobalt, or copper. Limitation for metal ions is sufficient for mrgA-lacZ induction, since resuspension in medium lacking both manganese and iron rapidly induces transcription. Transcription of mrgC-lacZ is also induced by iron deprivation but is not repressed by added manganese or other metal ions. Expression of mrgC-lacZ and a 2,3-dihydroxybenzoic acid-based siderophore is repressed in parallel by iron, and in both cases, only iron effects repression. We have cloned and sequenced the promoter and regulatory regions of both mrgA and mrgC. Both genes are preceded by a predicted sigma A-dependent promoter element with overlapping sequences similar to the iron box consensus element for recognition by the Escherichia coli ferric uptake regulator protein (Fur). Mutation of the putative iron box for gene mrgC leads to partial derepression in iron-replete medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.