Abstract

The work presented here focuses on the investigations of metallo-porphyrins and their gasochromic behavior. Gasochromic materials change their color while they are exposed to a certain gas. So they offer the possibility to develop very selective chemical gas sensors. In the focus of this work is the metallo-porphyrin 5, 10, 15, 20- tetraphenylporphyrin-zinc (ZnTPP). When embedded into a polymeric matrix (PVC) the color change to the toxic gas NO<sub>2</sub> can be detected. During exposure to NO<sub>2</sub> the dye changes its color from bright purple to yellow. To develop a standalone gas sensor, the ZnTPP/PVC matrix is deposited onto a planar optical waveguide. The color change of the porphyrin dye, due to the gas exposure, can be detected in the evanescent field of the optical waveguide. Therefore the light of a high power LED is coupled into the waveguide. The color change of the porphyrin is detectable with photodiodes as variations of the decoupled light intensity. The sensor shows no cross-sensitivities to other gases like CO<sub>2</sub>, NH<sub>3</sub>, EtOH, CO or water vapor. NO<sub>2</sub> is detectable with a limit of 1 ppm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.