Abstract

In photocatalysis, the most efficient way to separate photogenerated electron-hole pairs has been extensively studied. However, the methods to increase the quantities of free electrons are neglected. Herein, we used a self-assembly method to fabricate MTCPP/TiO2 composite materials with a series of metalloporphyrins (MTCPPs, M = Fe, Co, Zn) as sensitizers to modify TiO2 nanosheets. First, abundant carboxyl and hydroxyl on porphyrin were adsorbed by metal ions. Then, the remaining carboxyl and hydroxyl on porphyrin were anchored on the surface of TiO2 nanosheets. Finally, MTCPP/TiO2 was obtained by a layer-by-layer self-assembly process. MTCPP broadens the light response of TiO2 from ultraviolet light to visible light and enhances the CO2 adsorption ability. Moreover, metal ions coordinating with porphyrin regulate the electron density of the porphyrin ring and provide a stronger π feedback bond, which promote charge separation. Consequently, by optimizing the type of metal ion, the yield of ZnTCPP/TiO2 composites reached 109.33 μmol/(g h) of CO and 9.94 μmol/(g h) of CH4, which was more than 50 times that of pure TiO2. This study proposes a possible visible-light-induced CO2 reduction mechanism of metal-ion-based photocatalysis, which provides great insights into optimizing the designation of efficient photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.