Abstract

5,10,15,20-Tetraphenyl-21H,23H-porphine manganese (III) chloride [TPPMn(III)] is a positively charged lipophilic anion carrier that is widely used as a Cl- sensor. TPPMn(III) increased anion permeability of cultured mouse lung epithelial (MLE) cells as measured by short-circuit current (ISC) to a level similar to that induced by forskolin analogues. Anion permeability was also studied in cultured human lung epithelial (A549) cells by measurement of the rates of change of fluorescence of the anion sensitive fluorescent dye, 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). In these studies, cells were incubated with SPQ in SO2-4- medium, washed free of extracellular SPQ, and then perfused with medium containing anions that are known to quench SPQ fluorescence. The effect of TPPMn(III) on anion transport was then determined either microscopically in single cell studies or using cell monolayers mounted in a front face fluorimeter. TPPMn(III) in the range from 1 to 100 micrograms/ml induced a dose-dependent increase in Br- transport. The half-maximal quenching effect was estimated to be approximate 5 micrograms/ml. TPPMn(III) increased the rates of fluorescence quench of anions by up to fourfold. TPPMn(III) was without effect on -Ca2+-i level in A549 cells as measured with fura 2-AM. This indicates that TPPMn(III) effects were not mediated through effects on Ca+2 -activated Cl- channels, or by compromise of energy metabolism or membrane integrity of the cells. This study suggests that TPPMn(III) and, by extension, other lipophilic Mn(III) or Co(III) derivatives wherein the selectivity of lipophilicity is altered, could increase the anion permeability of biological membranes, and suggests a new approach for treatment of diseases such as cystic fibrosis, where transport of Cl- is defective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call