Abstract

Metallopolymers combine the property features of both metallic compounds and organic polymers, representing a typical direction for the design of high-performance hybrid materials. Here, a highly adaptive etching method to create pores and cavities in the metallopolymer particles is established. Starting from boronate polymer (BP) and inorganic@BP core-shell particles, porous, hollow, and yolk-shell metallopolymer particles can be fabricated, respectively. By taking advantage of the easy control over composition and pore/cavity structure, these metallopolymer particles provide a universal platform for the fabrication of nitrogen, boron co-doped carbon nanocomposites loaded with metals (M-NBCs). The as-prepared M-NBCs exhibit remarkable catalytic activities toward oxygen evolution reaction and hydrogen evolution reaction. An alkaline overall water splitting cell assembled by using M-NBCs as the anode and cathode can be driven by a single AAA battery. The proposed strategy for the construction of metallopolymer composites may enlighten for the design of complex hybrid nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call