Abstract

Metal phthalocyanines, possessing rich redox chemistry due to the presence of the central metal cation and pyrrolic nitrogen atoms of the macrocycle, are explored as electrochemical sensors. Nickel phthalocyanine nanofibres (NiPc NF) prepared by a simple chemical route are coated on a pencil graphite rod and the electrocatalytic performance of NiPc NF electrode is investigated for quantitative detection of ascorbic acid (AA) in 0.2 M phosphate buffer solution. The performance of NiPc NFs is shown to be superior to that of commercial NiPc and is attributed to the high electrochemically active surface area available for fibres. The electrode exhibits linearity for the detection over a wide concentration range of AA from \(5.5\,\upmu \hbox {M}\) to 5.2 mM. The detection limit for AA sensing with NiPc-NF-modified electrode is \(1.5\,\upmu \hbox {M}\). The higher performance of NiPc fibres due to its nanostructure morphology may be utilized for the quantitative detection of other biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.