Abstract
In this work, the physicochemical characterization of five (Al2O3, In2O3, Mn3O4, SiO2 and SnO2) nanoparticles (NPs) was carried out. In addition, the evaluation of the possible toxic impacts of these NPs and the respective modes of action were performed using the yeast Saccharomyces cerevisiae. In general, in aqueous suspension, metal(loid) oxide (MOx) NPs displayed an overall negative charge and agglomerated; these NPs were practically insoluble (dissolution < 8%) and did not generate detectable amounts of reactive oxygen species (ROS) under abiotic conditions. Except In2O3 NPs, which did not induce an obvious toxic effect on yeast cells (up to 100mg/L), the other NPs induced a loss of cell viability in a dose-dependent manner. The comparative analysis of the loss of cell viability induced by the NPs with the ions released by NPs (NPs supernatant) suggested that SiO2 toxicity was mainly caused by the NPs themselves, Al2O3 and SnO2 toxic effects could be attributed to both the NPs and the respective released ions and Mn3O4 harmfulness could be mainly due to the released ions. Al2O3, Mn3O4, SiO2 and SnO2 NPs induced the loss of metabolic activity and the generation of intracellular ROS without permeabilization of plasma membrane. The co-incubation of yeast cells with MOx NPs and a free radical scavenger (ascorbic acid) quenched intracellular ROS and significantly restored cell viability and metabolic activity. These results evidenced that the intracellular generation of ROS constituted the main cause of the cytotoxicity exhibited by yeasts treated with the MOx NPs. This study highlights the importance of a ROS-mediated mechanism in the toxicity induced by MOx NPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.