Abstract

[Gd@C(82)(OH)(22)](n) is a new type of nanoparticle with potent antineoplastic activity and low toxicity compared with traditional drugs. In this study, we explored, for the first time, the effect of [Gd@C(82)(OH)(22)](n) on the cell cycle using human breast cancer MCF-7 and human umbilical vein endothelial ECV304 cell lines by flow cytometry. Cell viability was assessed through CCK-8 assay, and MCF-7 tumor-bearing mice were examined after 2 weeks of treatment with [Gd@C(82)(OH)(22)](n). Cell cycle-related gene expression was detected by microarray and confirmed by real-time PCR and RNAi. Cell viability studies confirmed that [Gd@C(82)(OH)(22)](n) inhibits breast cancer effectively with very low toxicity. Flow cytometric data and microarray results reveal that [Gd@C(82)(OH)(22)](n) mediates G0/G1 arrest in both cell lines by regulating the expression of several genes, such as cyclin D2, cyclin E and CDK4, among others, in the related cell cycle. Results further demonstrated that [Gd@C(82)(OH)(22)](n) could inhibit tumor growth by inducing tumor cell and vein endothelial cell G0/G1 arrest, which may explain the low toxicity of [Gd@C(82)(OH)(22)](n).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.