Abstract

Tin (Sn4+) and zinc (Zn2+) derivatives of horse heart cytochrome c have been prepared and their optical spectra have been characterized. Zinc cytochrome c has visible absorption maxima at 549 and 585 nm and Soret absorption at 423 nm. Tin cytochrome c shows visible absorption maxima at 536 and 574 nm and Soret absorption at 410 nm. Unlike iron cytochrome c in which the emission spectrum of the porphyrin is almost completely quenched by the central metal, the zinc and tin derivatives of cytochrome c are both fluorescent and phosphorescent. The fluorescence maxima of zinc cytochrome c are at 590 and 640 nm and the fluorescence lifetime is 3.2 ns. The fluorescence maxima of Sn cytochrome are at 580 and 636 nm and the fluorescence lifetime is under 1 ns. The quantum yield of fluorescence is Zn greater than Sn while the quantum yield of phosphorescence is Sn greater than Zn. at 77 K the fluorescence and phosphorescence emission spectra of Sn and Zn cytochrome c show evidence of resolution into vibrational bands. The best resolved bands occur at frequency differences 750 cm-1 and 1540--1550 cm-1 from the O-O transition. These frequencies correspond with those obtained by resonance Raman spectroscopy for in-plane deformations of the porphyrin macrocycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.