Abstract
AbstractA comprehensive study of the structure and properties has been performed for copolymers of propylene‐1‐hexene, CiPH, and propylene‐ethylene, CiPE, synthesized by an isotactic metallocene catalyst system. The comonomer content constitutes the most important factor affecting the structure and properties of these CiPH and CiPE copolymers, although the length of the comonomer is also very important. Thus, a considerable decrease in crystallinity is observed in the two kinds of copolymers as the comonomer content increases. The structure in the CiPH copolymers evolves, however, from the typical, monoclinic crystal lattice to mesomorphic‐like, ordered entities for the highest 1‐hexene molar fraction, whereas in the CiPE copolymers the structural evolution with molar fraction goes from a monoclinic lattice to an almost amorphous material. All of these variations in crystal structure significantly influence the viscoelastic and mechanical behavior of these CiPH and CiPE copolymers. Consequently, the location and intensity of the different relaxation mechanisms, as well as the rigidity parameters (storage and Young's moduli and microhardness) and deformation mechanism are strongly dependent upon composition.magnified image
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.