Abstract

Dynamic compression of diatomic liquids using both single-shock (Hugoniot) and multiple-shock (reverberating-shock) compression achieves pressures which range up to a few 100 GPa (Mbar), densities as high as tenfold of initial liquid density in hydrogen, and temperatures up to several 1000 K. Single-shock compression produces substantial heating, which causes a limiting compression. Multiple-shock compression is quasi-isentropic, which achieves lower temperatures and higher densities than single shocks, and has no limiting compression. Diatomic fluids have universal behaviors under dynamic compression. Under multiple-shock compression, these fluids undergo density-driven nonmetal-metal Mott transitions, probably in the monatomic state, with common density scaling at ∼100 GPa. Under single-shock compression, these fluids have essentially the same Hugoniot in velocity space. D2 undergoes temperature-driven dissociation to a poor metal at ∼50 GPa. These results provide insight into which of the two published D2 Hugoniots is probably correct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.