Abstract
This paper aims to explore the metallic structure J2=pJ+qI, where p and q are natural numbers, using complete and horizontal lifts on the tangent bundle TM over almost quadratic ϕ-structures (briefly, (ϕ,ξ,η)). Tensor fields F˜ and F* are defined on TM, and it is shown that they are metallic structures over (ϕ,ξ,η). Next, the fundamental 2-form Ω and its derivative dΩ, with the help of complete lift on TM over (ϕ,ξ,η), are evaluated. Furthermore, the integrability conditions and expressions of the Lie derivative of metallic structures F˜ and F* are determined using complete and horizontal lifts on TM over (ϕ,ξ,η), respectively. Finally, we prove the existence of almost quadratic ϕ-structures on TM with non-trivial examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.