Abstract

HypothesisThe accretion of ice on component surfaces often causes severe impacts or accidents in modern industries. Applying icephobic surface is considered as an effective solution to minimise the hazards. However, the durability of the current icephobic surface and coatings for long-term service remains a great challenge. Therefore, it is indeed to develop new durable material structures with great icephobic performance. ExperimentsA new design concept of combining robust porous metallic skeletons and icephobic filling was proposed. Nickel/polydimethylsiloxane (PDMS) two-phase layer was prepared using porous Ni foam skeletons impregnated with PDMS as filling material by a two-step method. FindingsGood icephobicity and mechanical durability have been verified. Under external force, micro-cracks could easily initiate at the ice/solid interface due to the small surface cavities and the difference of local elastic modulus between the ice and PDMS, which would promote the ice fracture and thus lead to low ice adhesion strength. The surface morphology and icephobicity almost remain unchanged after water-sand erosion, showing greatly improved mechanical durability. By combining the advantages of the mechanical durability of porous Ni skeleton and the icephobicity of PDMS matrix, the Ni foam/PDMS two-phase layer demonstrates great potentials for ice protection with long-term service time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call