Abstract

The advent of precision manufacturing has enabled the creation of pores in metallic scaffolds with feature size in the range of single microns. In orthopedic implants, pore geometries at the micron scale could regulate bone formation by stimulating osteogenic differentiation and the coupling of osteogenesis and angiogenesis. However, the biological response to pore geometry at the cellular level is not clear. As cells are sensitive to curvature of the pore boundary, this study aimed to investigate osteogenesis in high- vs low-curvature environments by utilizing computer numerical control laser cutting to generate triangular and circular precision manufactured micropores (PMpores). We fabricated PMpores on 100 μm-thick stainless-steel discs. Triangular PMpores had a 30° vertex angle and a 300 μm base, and circular PMpores had a 300 μm diameter. We found triangular PMpores significantly enhanced the elastic modulus, proliferation, migration, and osteogenic differentiation of MC3T3-E1 preosteoblasts through Yes-associated protein (YAP) nuclear translocation. Inhibition of Rho-associated kinase (ROCK) and Myosin II abolished YAP translocation in all pore types and controls. Inhibition of YAP transcriptional activity reduced the proliferation, pore closure, collagen secretion, alkaline phosphatase (ALP), and Alizarin Red staining in MC3T3-E1 cultures. In C166 vascular endothelial cells, PMpores increased the VEGFA mRNA expression even without an angiogenic differentiation medium and induced tubule formation and maintenance. In terms of osteogenesis-angiogenesis coupling, a conditioned medium from MC3T3-E1 cells in PMpores promoted the expression of angiogenic genes in C166 cells. A coculture with MC3T3-E1 induced tubule formation and maintenance in C166 cells and tubule alignment along the edges of pores. Together, curvature cues in micropores are important stimuli to regulate osteogenic differentiation and osteogenesis-angiogenesis coupling. This study uncovered key mechanotransduction signaling components activated by curvature differences in a metallic scaffold and contributed to the understanding of the interaction between orthopedic implants and cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.