Abstract

AbstractSandwich structures and foamed materials are typical architectured materials. Their combination provides potentially very performant solutions combining stiffness, strength, energy absorption and acoustic damping. The present contribution deals with the integration of a special type of foams, namely hollow spheres stackings, into sandwich structures. Stainless steel hollow spheres main advantage relies on their smooth stress-strain curves and their very good repeatability, compared to other closed cell metallic foams. Therefore these foams are interesting alone but also in sandwich design. A parametric study of the macroscopic behaviour of random stainless steel hollow spheres packing in uniaxial compression was carried out. Scaling laws for the Young's modulus, and for yield strength were established, and they are used to calculate sandwich properties. Then one of the studied metallic hollow spheres packing has been integrated in a sandwich structure with stainless steel faces. Four point bending tests have been performed on various sandwich structures with four core thicknesses and three face thicknesses up to large deflection. We obtained thus the stiffness, the critical load where first damage occurs, the maximum load as a function of the sandwich parameters (core and face thickness). We compared this to classical analytical models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.