Abstract

Single phase alpha-kamacite containing more than 3.2 wt % Co and gamma-taenite containing from 30 to 60 wt % Ni from the Apollo 15 soils - 15031, 15071, 15081, 15261, and 15271 - have been examined by metallographic and electron microprobe techniques. In addition two phase alpha + gamma particles from soils 14003, 15071, 15261, and 15271 with Ni and Co contents well outside the meteoritic range have also been examined. Two distinct types of alpha-gamma structure occur, one analogous to 'clear taenite' in ordinary chondrites, and the other analogous to a 'Widmanstaetten' structure in Ni-rich ataxites. The measured Ni gradients in the two-phase particles are very similar to those meteorites having the same structure. However the Co content is much higher than the meteoritic samples, up to 12 wt % in the alpha phase. Approximate phase equilibria data for the Fe-Ni-Co system indicate equilibration of the two-phase particles during cooling to approximately 350 C. Estimates of cooling rates and second-phase growth times indicate that the maximum time necessary for the development of the high-Co two-phase structures is roughly 25 to 100 m.y. These estimates argue for the development of the two-phase structures during formation of the lunar crust, at a depth of 10 to 20 km beneath the moon's surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.