Abstract

A dual bed catalyst system consisting of a metallic Ni monolith catalyst in the front followed by a supported nickel catalyst Ni/MgAl 2O 4 has been studied for the autothermal partial oxidation of methane to synthesis gas. The effects of bed configuration, reforming bed length, feed temperature and gas hourly space velocity on the reaction as well as the stability are investigated. The results show that the metallic Ni monolith in the front functions as the oxidation catalyst, which prevents the exposure of the reforming catalyst in the back to the very high temperature, while the supported Ni/MgAl 2O 4 in the back functions as the reforming catalyst which further increases the methane conversion by 5%. A typical 5 mmNi monolith–5mmNi/MgAl 2O 4 dual bed catalyst exhibits methane conversion and hydrogen and carbon monoxide selectivities of 85.3%, 91.5% and 93.0%, respectively, under autothermal conditions at a methane to oxygen molar ratio of 2.0 and gas hourly space velocity of 1.0 × 10 5 h −1. The dual bed catalyst system is also very stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.