Abstract

Optical spectroscopy and imaging diagnostics in next-step fusion devices will rely on metallic mirrors. The performance of mirrors is studied in present-day tokamaks and in laboratory systems. This work deals with comprehensive tests of mirrors: (a) exposed in JET with the ITER-like wall (JET-ILW); (b) irradiated by hydrogen, helium and heavy ions to simulate transmutation effects and damage which may be induced by neutrons under reactor conditions. The emphasis has been on surface modification: deposited layers on JET mirrors from the divertor and on near-surface damage in ion-irradiated targets. Analyses performed with ion beams, microscopy and spectro-photometry techniques have revealed: (i) the formation of multiple co-deposited layers; (ii) flaking-off of the layers already in the tokamak, despite the small thickness (130–200 nm) of the granular deposits; (iii) deposition of dust particles (0.2–5 μm, 300–400 mm−2) composed mainly of tungsten and nickel; (iv) that the stepwise irradiation of up to 30 dpa by heavy ions (Mo, Zr or Nb) caused only small changes in the optical performance, in some cases even improving reflectivity due to the removal of the surface oxide layer; (v) significant reflectivity degradation related to bubble formation caused by the irradiation with He and H ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call