Abstract

Repair of large bone defects caused by trauma or disease poses significant clinical challenges. Extensive research has focused on metallic materials for bone repair because of their favorable mechanical properties, biocompatibility, and manufacturing processes. Traditional metallic materials, such as stainless steel and titanium alloys, are widely used in clinics. Biodegradable metallic materials, such as iron, magnesium, and zinc alloys, are promising candidates for bone repair because of their ability to degrade over time. Emerging metallic materials, such as porous tantalum and bismuth alloys, have gained attention as bone implants owing to their bone affinity and multifunctionality. However, these metallic materials encounter many practical difficulties that require urgent improvement. This article systematically reviews and analyzes the metallic materials used for bone repair, providing a comprehensive overview of their morphology, mechanical properties, biocompatibility, and in vivo implantation. Furthermore, the strategies and efforts made to address the short-comings of metallic materials are summarized. Finally, the perspectives for the development of metallic materials to guide future research and advancements in clinical practice are identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.