Abstract

X-ray detectors based on the concept of magnetic calorimetry are well suited for high-resolution spectroscopy. Metallic magnetic calorimeters (MMC) make use of a metallic paramagnetic temperature sensor, which is in tight thermal contact with a metallic X-ray absorber. The paramagnetic sensor is placed in a small magnetic field. Its magnetization is used to monitor the temperature, which in turn is related to the internal energy of the calorimeter. High-energy resolution can be obtained by using a low-noise, high-bandwidth DC SQUID to measure the small change in magnetization upon the absorption of an X-ray. With recent prototype detectors an energy resolution of ΔEFWHM=3.4eV for X-ray energies up to 6.5keV has been achieved. We discuss general design considerations, the thermodynamic properties of such calorimeters, the energy resolution, and the various sources of noise, which are observed in MMCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.