Abstract

Current magnetic-nanoparticle technology is challenging due to the limited magnetic properties of iron oxide nanoparticles (IONPs). Increasing the saturation magnetization of magnetic nanoparticles may permit more effective development of multifunctional agents for simultaneous targeted cell delivery, magnetic resonance imaging (MRI) contrast enhancement, and targeted cancer therapy in the form of local hyperthermia. We describe the synthesis and characterization of novel iron-based nanoparticles (FeNPs) coated with biocompatible bis-carboxyl-terminated poly(ethylene glycol) (cPEG). In comparison to conventional IONPs similar in size (10 nm), FeNPs particles have a much greater magnetization and coercivity based on hysteresis loops from sample magnetometry. Increased magnetization afforded by the FeNPs permits more effective generation of local hyperthermia than IONPs when subjected to an oscillating magnetic field in a safe frequency range. Furthermore, FeNPs have a much stronger shortening effect on T2 relaxation time than IONPs, suggesting that FeNPs may be more effective MRI contrast agents. Next-generation FeNPs with a biocompatible coating may in the future be functionalized with the attachment of peptides specific to cancer cells for imaging and therapy in the form of local hyperthermia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call