Abstract

The remarkable properties of layered materials such as MoS2 strongly depend on their dimensionality. Beyond manipulating their dimensions, it has been predicted that the electronic properties of MoS2 can also be tailored by carefully selecting the type of edge sites exposed. However, achieving full control over the type of exposed edge sites while simultaneously modifying the dimensionality of the nanostructures is highly challenging. Here we adopt a top-down approach based on focus ion beam in order to selectively pattern the exposed edge sites. This strategy allows us to select either the armchair (AC) or the zig-zag (ZZ) edges in the MoS2 nanostructures, as confirmed by high-resolution transmission electron microscopy measurements. The edge-type dependence of the local electronic properties in these MoS2 nanostructures is studied by means of electron energy-loss spectroscopy measurements. This way, we demonstrate that the ZZ-MoS2 nanostructures exhibit clear fingerprints of their predicted metallic character. Our results pave the way towards novel approaches for the design and fabrication of more complex nanostructures based on MoS2 and related layered materials for applications in fields such as electronics, optoelectronics, photovoltaics, and photocatalysts.

Highlights

  • The remarkable properties of layered materials such as MoS2 strongly depend on their dimensionality

  • It is clear that the design and fabrication of MoS2 nanostructures with morphologies that maximize the number of exposed active edge sites is a key aspect for further improvements in terms of applications

  • In order to further validate the onset of the metallic behavior observed in the ZZ MoS2 nanowalls (NWs), we calculated the corresponding density of states (DOS) by means of ab-initio calculations in the framework of density functional theory (DFT)

Read more

Summary

Introduction

The remarkable properties of layered materials such as MoS2 strongly depend on their dimensionality. The ability of crafting new materials in a way that makes possible controlling and enhancing their properties is one of the main requirements of the ongoing nanotechnology revolution[1,2] In this context, a family of materials that has attracted intense attention recently are 2D layered materials, such as MoS2, which belong to the group of transition metal dichalcogenides (TMDs). The main goal of this work is to bridge these two requirements by realizing a novel approach to the growth of vertically-oriented standing MoS2 layers with full control on the nature of the exposed edge sites To achieve this goal, here we adapt a well-stablished top-down approach based on focus ion beam (FIB) in a way that allows us to selectively pattern both types of edges (AC and ZZ) within out-of-plane (vertical) MoS2

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.