Abstract

The performance of silicon-based transistors is reaching its limit, and new materials like carbon nanotubes (CNTs) have started emerging to replace them in electronic products. However, the precise manipulation of CNTs requires complicated techniques, which increases process variation. These variations can lead to a decrease in the overall yield of the field-effect transistor (FET). This study shows how a low-frequency signal may regulate the number of CNTs on electrodes with a nanometer scale. We also demonstrate using an interdigitated electrode to reduce the shorts caused by metallic CNTs. The fabricated CNFETs were characterized using SEM, AFM, and I-V measurements. The study also demonstrates how the duration and amplitude of the applied signal impact the density of CNTs on the electrodes. Finally, finite element analysis was used to evaluate the electric field parameters during DEP. This technique will lead to precise CNTs per unit area, which can help fabricate transistors, sensors, and other electronic components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.