Abstract

Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful d-block metal catalysts have been developed in recent years, but even binding of dinitrogen to an f-block metal cation is extremely rare. Here we report f-block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.