Abstract
Stimuli-responsive luminescent materials have received great attention for their potential application in anti-counterfeiting and information encryption. Manganese halide hybrids have been considered an efficient stimuli-responsive luminescent material due to their low price and adjustable photoluminescence (PL). However, the photoluminescence quantum yield (PLQY) of PEA2MnBr4 is relatively low. Herein, Zn2+- and Pb2+-doped PEA2MnBr4 samples are synthesized, and show an intense green emission and orange emission, respectively. After doping with Zn2+, the PLQY of PEA2MnBr4 is elevated from 9% to 40%. We have found that green emitting Zn2+-doped PEA2MnBr4 could transform to a pink color after being exposed to air for several seconds and the reversible transformation from pink to green was achieved by using heating treatment. Benefiting from this property, an anti-counterfeiting label is fabricated, which exhibits excellent "pink-green-pink" cycle capability. Pb2+-doped PEA2Mn0.88Zn0.12Br4 is acquired by cation exchange reaction, which shows intense orange emission with a high QY of 85%. The PL of Pb2+-doped PEA2Mn0.88Zn0.12Br4 decreases with increasing temperature. Hence, the encrypted multilayer composite film is fabricated relying on the different thermal responses of Zn2+- and Pb2+-doped PEA2MnBr4, whereby the encrypted information can be read out by thermal treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.