Abstract
The interplay between strong Coulomb interactions and randomness has been a long-standing problem in condensed matter physics. According to the scaling theory of localization in two-dimensional systems of non-interacting or weakly interacting electrons, the ever-present randomness causes the resistance to rise as the temperature is decreased, leading to an insulating ground state. However, new evidence has emerged within the past decade indicating a transition from the insulating to metallic phase in two-dimensional systems of strongly interacting electrons. We review earlier experiments that demonstrate the unexpected presence of a metallic phase in two dimensions, and present an overview of recent experiments with emphasis on the anomalous magnetic properties that have been observed in the vicinity of the transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.