Abstract

Abstract In this study, we report the synthesis and crystal structures of coordination polymers employing tetrabromobenzenedicarboxylate (Br4bdc2−) and pyrazine (pyz). Uncoordinated pyz molecules are stabilized between the layers by both hydrogen H-bonding and π–π stacking interactions in [M(Br4bdc)(pyz)(H2O)2](pyz), where M = Co(II) and Zn(II). In addition, water molecules are incorporated between the layers in [Cu(Br4bdc)(pyz)(H2O)2](H2O) owing to Jahn–Teller distortion of the Cu(II) ions, which prevents π–π stacking interactions between the pyz and Br4bdc2−. Depending on the metal(II) centers, structural changes that occur during the heating and hydration processes exhibit different behavior. Co(II) compound slowly changes structure by heating and rapidly recovers the crystalline state in air. Conversely, Zn(II) compound assumes the amorphous phase by heating and slowly yields the crystalline phase in ambient conditions. Although the Cu(II) compound also shows structural changes by heating, the dehydrated phase exhibits hydrophobic characteristics. Ion conductivity measurements of the as-synthesized forms show conductivities of 1.9 × 10−6 Scm−1, 4.6 × 10−7 Scm−1, and 1.3 × 10−6 Scm−1, for the Co(II), Zn(II), and Cu(II) complexes at 90 °C and 95% relative humidity (RH), respectively. The relatively low values of the as-synthesized Co(II) and Zn(II) compounds are attributed to the H-bonding interaction and π–π stacking of pyz molecules, which prevent the dynamics of the pyz molecules needed for proton conduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.