Abstract

Four new metal–organic coordination polymers [Cu(L)(mpa)]·3H2O (1), [Co(L)(mpa)]·H2O (2), [Zn(L)(mpa)]·H2O (3), and [Cd(L)(mpa)(H2O)]·H2O (4) were synthesized by reactions of the corresponding metal(II) salts based on mixed ligands of 1,4-di(1H-imidazol-4-yl)benzene (L) and 4-methylphthalic acid (H2mpa), respectively. The structures of the complexes were characterized by elemental analysis, FT-IR spectroscopy, and single-crystal X-ray diffraction. Compound 1 exhibits a binodal 4-connected three dimensional (3D) architecture with (65·8)-CdSO4 topology, while complexes 2 and 3 are isostructural and have two-dimensional (2D) layer structure with (4, 4) sql topology based on the binuclear metal subunits. Complex 4 has the same 2D layer structure with (4, 4) sql topology as complexes 2 and 3, but the inclined interpenetration of parallel sets of layers result in the formation with 2D + 2D → 3D framework. The activated sample 1 shows selective CO2 uptake over N2. The photoluminiscent properties together with quantum yield (QY) and luminescence lifetime are also investigated for complexes 3 and 4 in the solid state at room temperature.

Highlights

  • The N-donor ligands with rod-type two-connector between the two terminal coordination groups, for example, 4,40 -bipyridine(bpy), 1,2-bis(4-pyridyl)ethane(bpe), or their analogues, can be employed as ‘pillars’ together with the carboxylate ligand to meet the requirement of coordination geometries of metal ions in the assembly process [18,19,20,21]

  • Following the mixed ligand strategy, we have focused our attention on the mixed ligand strategy, we have focused our attention on the reactions of rigid 4-imidazole-containing reactions of rigid 4-imidazole-containing ligands, together with different carboxylate ligands and ligands, together with different carboxylate ligands and different metal salts and synthesized a series different metal salts and synthesized a series of novel metal−organic frameworks (MOFs) based on the N and O donor mixed of novel MOFs based on the N and O donor mixed spacers [29,30,31,32]

  • The based on mixed multi-N-donor and polycarboxylate auxiliaryauxiliary ligands ligands were synthesized by reactions of the different metal salts under hydrothermal methods

Read more

Summary

Introduction

The assembly of MOFs can be influenced by several factors, such as the reaction condition, coordination geometry of the metal ions, nature of anions, flexibility, and coordination modes of the ligands, temperature, solvent, and so on [11,12,13]. The N-donor ligands as well as the polycarboxylates, as two most commonly used organic linkers in the assembly of MOFs, have been widely designed and selected for their various coordination modes, and modifiable backbones. The N-donor ligands with rod-type two-connector between the two terminal coordination groups, for example, 4,40 -bipyridine(bpy), 1,2-bis(4-pyridyl)ethane(bpe), or their analogues, can be employed as ‘pillars’ together with the carboxylate ligand to meet the requirement of coordination geometries of metal ions in the assembly process [18,19,20,21].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.