Abstract

The magnetic properties of metal-functionalized graphitic carbon nitride nanotubes were investigated based on first-principles calculations. The graphitic carbon nitride nanotube can be either ferromagnetic or antiferromagnetic by functionalizing with different metal atoms. The W- and Ti-functionalized nanotubes are ferromagnetic, which are attributed to carrier-mediated interactions because of the coupling between the spin-polarized d and p electrons and the formation of the impurity bands close to the band edges. However, Cr-, Mn-, Co-, and Ni-functionalized nanotubes are antiferromagnetic because of the anti-alignment of the magnetic moments between neighboring metal atoms. The functionalized nanotubes may be used in spintronics and hydrogen storage.

Highlights

  • Applications of spin-based devices are so far limited to information storage, and most of the spin-related materials and devices still rely primarily on the spontaneous ordering of spins in the form of different types of magnetic materials

  • The first-principles calculation was carried out based on the density function theory (DFT) and the PerdewBurke-Eznerhof generalized gradient approximation (PBE-GGA) [28,29]

  • The graphitic carbon nitride (gC3N4) nanotube is obtained by rolling up the g-C3N4 monolayer into a cylinder along the axial (x) direction (Figure 1), which is defined as a zigzag tube, adopting a similar terminology used in other nanotubes [33,34]

Read more

Summary

Introduction

Applications of spin-based devices are so far limited to information storage, and most of the spin-related materials and devices still rely primarily on the spontaneous ordering of spins in the form of different types of magnetic materials. This situation is expected to change with successful development of spin-based electronics, or spintronics, the new kind of electronics that seeks to exploit, in addition to the charge degree of freedom, the spin of the carriers [1]. The doped semiconductors are referred as dilute magnetic semiconductors (DMSs) because only a small amount of magnetic ions is required to make the semiconductor magnetic. The search for DMSs has been focused on cation substitution of semiconductors with

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.