Abstract

The development of selective and site-specific bio-orthogonal conjugation methods is an important topic in chemical biology. A wide range of methods, such as the Staudinger ligation, native chemical ligation, genetic incorporation, expressed-protein ligation, Huisgen azide–alkyne cycloaddition, and the Diels–Alder ligation are currently employed in the selective modification of proteins and other biomolecules. In recent years, the Cu-catalyzed variant of the Huisgen 1,3-dipolar cycloaddition, also referred to as “click reaction”, has been increasingly applied in various fields of chemistry as a versatile and mild ligation method. This method allows for the synthesis of complex materials, which include bioconjugates, glycopeptides, functionalized polymers, virus particles, and therapeutics. However, due to the toxicity of the copper catalyst to both bacterial and mammalian cells applications that involve in vivo ligation are limited. In order to circumvent the use of copper ions, Bertozzi and co-workers have devised a strain-promoted [3+2] cycloaddition reaction that involves azides and a strained cyclooctyne derivative. Recent reports by Ju et al. have also shown successful applications of copper-free 1,3-dipolar cycloaddition by using either elevated temperatures or electron-deficient alkynes. We envisioned that the combination of ring strain and electron deficiency, as occurs in oxa-bridged bicyclic systems 2a and 2b, could also lead to an increased reactivity toward [3+2] cycloaddition reactions. Here, we report a spontaneous tandem [3+2] cycloaddition–retro-Diels–Alder ligation method that results in a stable 1,2,3-triazole linkage. This methodology can be applied to biomacromolecules that contain various functional groups under physiological conditions. The oxabridged bicyclic systems 2a and 2b were prepared by a Diels– Alder reaction of substituted propiolates with furan (Scheme 1). Subsequent hydrolysis provided the desired carboxylic acid derivatives 3a and 3b, in excellent yield. To compare the reactivity of Diels–Alder products 2a and b with the corresponding alkynes, [3+2] cycloaddition reactions were performed under ambient conditions by using benzyl azide, and monitored over time with H NMR spectroscopy (Figure 1). The oxanorbornadienes 2a and 2b and their respective alkynes provided identical 1,4,5-substituted triazoles to the products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call