Abstract
We synthesized three metal-free organic dyes (H11–H13) consisting of a 3,6-disubstituted carbazole, benzothiadiazole, and cyanoacrylic acid. All the dyes exhibited high molar extinction coefficients and suitable energy levels for electron transfer from the electrolyte to the TiO2 nanoparticles. Under standard AM 1.5G solar irradiation, the device using dye H13 with co-adsorbed chenodeoxycholic acid (CDCA) displayed the best performance: an open-circuit voltage (Voc) of 0.71 V, a short-circuit current density (Jsc) of 12.69 mA cm−2, a fill factor (FF) of 0.71, and a power conversion efficiency (PCE) of 6.32%. The PCE was ∼79% of that for commercially available N719 cells (8.02%) under the same conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.