Abstract

Metal-free catalysts show environmental friendliness and cost-effectiveness, as well as less susceptibility to poisoning over metal and metal oxide catalysts. In this respect, we present the synthesis and characterization of metal-free mesoporous nitrogen- and boron-codoped nanocarbon (meso-N,B/C), which exhibits good catalytic performance with conversion of 89% and selectivity of 83% toward amide synthesis from primary alcohols using NH4OAc as an ammonia resource under an oxygen atmosphere. The facile codoping synthetic strategy was executed by pyrolysis of nitrogen-enriched ligand 4,5-diazafluorene-9-one azine (DAA) and H3BO3 as a nitrogen and boron content modulator, respectively. Significantly, control experiments revealed that the reaction proceeded through direct oxidative dehydrogenation of hemiaminal after aldehyde-ammonia condensation, which was remarkably different from that in the previous literature. Density functional theory (DFT) calculations further demonstrate that the selective preference...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.